懂视

线代中是不是不同的特征值对应的特征向量必是正交的

2024-10-25 00:51:30

不是,如矩阵A=

[23]

[21],它的特征值为-1、4,对应的特征向量为(-1,1)^T,(3,2)^T,显然这两个向量是不正交的

但是一般的,对于任意矩阵,不同特征值对应的特征向量必然线性无关;特别地,对于实对称矩阵,不同特征值对应的特征向量必然正交。

扩展资料:

A的一个特征值λ的代数重次是λ作为A的特征多项式的零点的次数;换句话说,若λ是一个该多项式的根,它是因子(t−λ)在特征多项式中在因式分解后中出现的次数。一个n×n矩阵有n个特征值,如果将代数重次计算在内的话,因为其特征多项式次数为n。

一个代数重次1的特征值为“单特征值”。

在关于矩阵理论的条目中,可能会遇到如下的命题:

"一个矩阵A的特征值为4,4,3,3,3,2,2,1"

表示4的代数重次为二,3的是三,2的是二,而1的是1。这样的风格因为代数重次对于矩阵理论中的很多数学证明很重要而被大量使用。

其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算,也就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。

参考资料:百度百科——线性代数