懂视

正交矩阵相似对角化;可逆矩阵相似对角化;可对角化;这三者有什么区别?

2024-10-25 00:25:49

P^-1AP= 对角矩阵。

正交对角化要求P是正交矩阵,即P可逆且P^-1=P^T。即是相似变换又是合同变换,用于二次型。

可逆矩阵相似对角化。一般考虑的是方阵,并不要求方阵可逆,要求P可逆。

可对角化就是A可相似对角化,即存在可逆矩阵P使得P^-1AP= 对角矩阵。

扩展资料:

在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。

1.方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;

2.方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;

3.A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;

4.A的列向量组也是正交单位向量组。

5.正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。

参考资料来源:百度百科-正交矩阵