1.对利润函数\(f=p_1q_1+p_2q_2-c\)进行微分,得到:\[f_p=-0.2p_1^2-0.05p_2^2+32p_1+12p_2-1395\]2.对\(p_1\)进行偏微分,并设其偏导数为零:\[\frac{\partialf}{\partialp_1}=-0.4p_1+32=0\]解得\(p_1=\frac{32}{0.4}=80\)3.对\(p_2\)进行偏微分,并设其偏导数为零:\[\frac{\partialf}{\partialp_2}=-0.1p_2+12=0\]解得\(p_2=\frac{120}{0.1}=1200\)4.将\(p_1=80\)和\(p_2=120\)代入原利润函数:\[f=-(80-p_1)^2/5-(120-p_2)^2/20+605\]由于\((80-p_1)^2\)和\((120-p_2)^2\)都是平方项,它们不会为负。5.为了求最大利润,我们令\(p_1=80\)和\(p_2=120\):\[\text{最大利润}=605\]